public class WatchedDoubleStepQREigen_DDRM
extends java.lang.Object
The double step implicit Eigenvalue decomposition algorithm is fairly complicated and needs to be designed so that it can handle several special cases. To aid in development and debugging this class was created. It allows individual components to be tested and to print out their results. This shows how each step is performed.
Do not use this class to compute the eigenvalues since it is much slower than a non-debug implementation.
Modifier and Type | Field and Description |
---|---|
boolean |
createR |
org.ejml.data.DMatrixRMaj |
Q |
Constructor and Description |
---|
WatchedDoubleStepQREigen_DDRM() |
Modifier and Type | Method and Description |
---|---|
void |
addComputedEigen2x2(int x1,
int x2) |
void |
addEigenAt(int x1) |
boolean |
bulgeDoubleStepQn(int i) |
boolean |
bulgeDoubleStepQn(int i,
double a11,
double a21,
double a31,
double threshold,
boolean set) |
boolean |
bulgeSingleStepQn(int i) |
boolean |
bulgeSingleStepQn(int i,
double a11,
double a21,
double threshold,
boolean set) |
boolean |
createBulgeSingleStep(int x1,
double eigenvalue) |
void |
eigen2by2_scale(double a11,
double a12,
double a21,
double a22) |
void |
exceptionalShift(int x1,
int x2)
Perform a shift in a random direction that is of the same magnitude as the elements in the matrix.
|
org.ejml.data.Complex_F64[] |
getEigenvalues() |
int |
getNumberOfEigenvalues() |
void |
implicitDoubleStep(int x1,
int x2)
Performs an implicit double step using the values contained in the lower right hand side
of the submatrix for the estimated eigenvector values.
|
void |
incrementSteps() |
boolean |
isReal2x2(int x1,
int x2) |
boolean |
isZero(int x1,
int x2) |
void |
performImplicitDoubleStep(int x1,
int x2,
double real,
double img)
Performs an implicit double step given the set of two imaginary eigenvalues provided.
|
void |
performImplicitSingleStep(int x1,
int x2,
double eigenvalue) |
void |
printSteps() |
void |
setChecks(boolean hessenberg,
boolean orthogonal,
boolean uncountable) |
void |
setQ(org.ejml.data.DMatrixRMaj Q) |
void |
setup(org.ejml.data.DMatrixRMaj A) |
public void incrementSteps()
public void setQ(org.ejml.data.DMatrixRMaj Q)
public void setChecks(boolean hessenberg, boolean orthogonal, boolean uncountable)
public boolean isZero(int x1, int x2)
public void setup(org.ejml.data.DMatrixRMaj A)
public void exceptionalShift(int x1, int x2)
public void implicitDoubleStep(int x1, int x2)
x1
- x2
- public void performImplicitDoubleStep(int x1, int x2, double real, double img)
x1
- upper index of submatrix.x2
- lower index of submatrix.real
- Real component of each of the eigenvalues.img
- Imaginary component of one of the eigenvalues.public void performImplicitSingleStep(int x1, int x2, double eigenvalue)
public boolean createBulgeSingleStep(int x1, double eigenvalue)
public boolean bulgeDoubleStepQn(int i)
public boolean bulgeDoubleStepQn(int i, double a11, double a21, double a31, double threshold, boolean set)
public boolean bulgeSingleStepQn(int i)
public boolean bulgeSingleStepQn(int i, double a11, double a21, double threshold, boolean set)
public void eigen2by2_scale(double a11, double a12, double a21, double a22)
public int getNumberOfEigenvalues()
public org.ejml.data.Complex_F64[] getEigenvalues()
public void addComputedEigen2x2(int x1, int x2)
public boolean isReal2x2(int x1, int x2)
public void addEigenAt(int x1)
public void printSteps()