source: osm/applications/editors/josm/plugins/utilsplugin/src/UtilsPlugin/SimplifyWayAction.java@ 5080

Last change on this file since 5080 was 5076, checked in by gabriel, 17 years ago

utilsplugin: Port to API 0.5.

File size: 8.2 KB
Line 
1package UtilsPlugin;
2
3import static org.openstreetmap.josm.tools.I18n.tr;
4
5import java.awt.event.ActionEvent;
6import java.util.ArrayList;
7import java.util.Collection;
8import java.util.Collections;
9import java.util.HashSet;
10import java.util.LinkedList;
11import java.util.List;
12
13import org.openstreetmap.josm.Main;
14import org.openstreetmap.josm.command.ChangeCommand;
15import org.openstreetmap.josm.command.Command;
16import org.openstreetmap.josm.command.DeleteCommand;
17import org.openstreetmap.josm.command.SequenceCommand;
18import org.openstreetmap.josm.data.coor.LatLon;
19import org.openstreetmap.josm.data.osm.Node;
20import org.openstreetmap.josm.data.osm.OsmPrimitive;
21import org.openstreetmap.josm.data.osm.Way;
22import org.openstreetmap.josm.data.osm.visitor.CollectBackReferencesVisitor;
23
24import org.openstreetmap.josm.data.osm.DataSet;
25import org.openstreetmap.josm.actions.JosmAction;
26
27public class SimplifyWayAction extends JosmAction {
28 public SimplifyWayAction() {
29 super(tr("Simplify Way"), "simplify",
30 tr("Delete unnecessary nodes from a way."), 0, 0, true);
31 }
32
33 public void actionPerformed(ActionEvent e) {
34 Collection<OsmPrimitive> selection = Main.ds.getSelected();
35
36 if (selection.size() == 1 && selection.iterator().next() instanceof Way) {
37 simplifyWay((Way) selection.iterator().next());
38 }
39 }
40
41 public void simplifyWay(Way w) {
42 double threshold = Double.parseDouble(
43 Main.pref.get("simplify-way.max-error", "50"));
44
45 Way wnew = new Way(w);
46
47 int toI = wnew.nodes.size() - 1;
48 for (int i = wnew.nodes.size() - 1; i >= 0; i--) {
49 CollectBackReferencesVisitor backRefsV =
50 new CollectBackReferencesVisitor(Main.ds, false);
51 backRefsV.visit(wnew.nodes.get(i));
52 boolean used = false;
53 if (backRefsV.data.size() == 1) {
54 used = Collections.frequency(
55 w.nodes, wnew.nodes.get(i)) > 1;
56 } else {
57 backRefsV.data.remove(w);
58 used = !backRefsV.data.isEmpty();
59 }
60
61 if (used) {
62 if (toI - i >= 2) {
63 ArrayList<Node> ns = new ArrayList<Node>();
64 simplifyWayRange(wnew, i, toI, ns, threshold);
65 for (int j = toI-1; j > i; j--) wnew.nodes.remove(j);
66 wnew.nodes.addAll(i+1, ns);
67 }
68 toI = i;
69 }
70 }
71
72 HashSet<Node> delNodes = new HashSet<Node>();
73 delNodes.addAll(w.nodes);
74 delNodes.removeAll(wnew.nodes);
75
76 if (wnew.nodes.size() != w.nodes.size()) {
77 Collection<Command> cmds = new LinkedList<Command>();
78 cmds.add(new ChangeCommand(w, wnew));
79 cmds.add(new DeleteCommand(delNodes));
80 Main.main.undoRedo.add(
81 new SequenceCommand(tr("Simplify Way (remove {0} nodes)",
82 delNodes.size()),
83 cmds));
84 Main.map.repaint();
85 }
86 }
87
88 /*
89 * Takes an interval [from,to] and adds nodes from the set (from,to) to
90 * ns.
91 */
92 public void simplifyWayRange(Way wnew, int from, int to, ArrayList<Node> ns, double thr) {
93 Node fromN = wnew.nodes.get(from), toN = wnew.nodes.get(to);
94
95 int imax = -1;
96 double xtemax = 0;
97 for (int i = from+1; i < to; i++) {
98 Node n = wnew.nodes.get(i);
99 double xte = radtometers(linedist(
100 fromN.coor.lat(), fromN.coor.lon(),
101 n.coor.lat(), n.coor.lon(),
102 toN.coor.lat(), toN.coor.lon()));
103 if (xte > xtemax) {
104 xtemax = xte;
105 imax = i;
106 }
107 }
108
109 if (imax != -1 && xtemax >= thr) {
110 simplifyWayRange(wnew, from, imax, ns, thr);
111 ns.add(wnew.nodes.get(imax));
112 simplifyWayRange(wnew, imax, to, ns, thr);
113 }
114 }
115
116 /* ----------------------------------------------------------------------
117 * Everything below this comment was converted from C to Java by Frederik
118 * Ramm. The original sources are the files grtcirc.c and smplrout.c from
119 * the gpsbabel source code (www.gpsbabel.org), which is under GPL. The
120 * relevant code portions have been written by Robert Lipe.
121 *
122 * Method names have been left unchanged where possible.
123 */
124
125 public static double EARTH_RAD = 6378137.0;
126 public static double radmiles = EARTH_RAD*100.0/2.54/12.0/5280.0;
127
128 public static double[] crossproduct(double[] v1, double[] v2) {
129 double[] rv = new double[3];
130 rv[0] = v1[1]*v2[2]-v2[1]*v1[2];
131 rv[1] = v1[2]*v2[0]-v2[2]*v1[0];
132 rv[2] = v1[0]*v2[1]-v1[1]*v2[0];
133 return rv;
134 }
135
136 public static double dotproduct(double[] v1, double[] v2) {
137 return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
138 }
139
140 public static double radtomiles(double rads) {
141 return (rads*radmiles);
142 }
143
144 public static double radtometers(double rads) {
145 return (rads * EARTH_RAD);
146 }
147
148 public static double veclen(double[] vec) {
149 return Math.sqrt(vec[0]*vec[0]+vec[1]*vec[1]+vec[2]*vec[2]);
150 }
151
152 public static double gcdist(double lat1, double lon1, double lat2, double lon2)
153 {
154 double res;
155 double sdlat, sdlon;
156
157 sdlat = Math.sin((lat1 - lat2) / 2.0);
158 sdlon = Math.sin((lon1 - lon2) / 2.0);
159
160 res = Math.sqrt(sdlat * sdlat + Math.cos(lat1) * Math.cos(lat2) * sdlon * sdlon);
161
162 if (res > 1.0) {
163 res = 1.0;
164 } else if (res < -1.0) {
165 res = -1.0;
166 }
167
168 res = Math.asin(res);
169 return 2.0 * res;
170 }
171
172 static double linedist(double lat1, double lon1, double lat2, double lon2, double lat3, double lon3) {
173
174 double dot;
175
176 /* degrees to radians */
177 lat1 = Math.toRadians(lat1); lon1 = Math.toRadians(lon1);
178 lat2 = Math.toRadians(lat2); lon2 = Math.toRadians(lon2);
179 lat3 = Math.toRadians(lat3); lon3 = Math.toRadians(lon3);
180
181 /* polar to ECEF rectangular */
182 double[] v1 = new double[3];
183 double[] v2 = new double[3];
184 double[] v3 = new double[3];
185 v1[0] = Math.cos(lon1)*Math.cos(lat1); v1[1] = Math.sin(lat1); v1[2] = Math.sin(lon1)*Math.cos(lat1);
186 v2[0] = Math.cos(lon2)*Math.cos(lat2); v2[1] = Math.sin(lat2); v2[2] = Math.sin(lon2)*Math.cos(lat2);
187 v3[0] = Math.cos(lon3)*Math.cos(lat3); v3[1] = Math.sin(lat3); v3[2] = Math.sin(lon3)*Math.cos(lat3);
188
189 /* 'va' is the axis; the line that passes through the center of the earth
190 * and is perpendicular to the great circle through point 1 and point 2
191 * It is computed by taking the cross product of the '1' and '2' vectors.*/
192 double[] va = crossproduct(v1, v2);
193 double la = veclen(va);
194
195 if (la != 0) {
196 va[0] /= la;
197 va[1] /= la;
198 va[2] /= la;
199
200 /* dot is the component of the length of '3' that is along the axis.
201 * What's left is a non-normalized vector that lies in the plane of
202 * 1 and 2. */
203
204 dot = dotproduct(v3, va);
205
206 double[] vp = new double[3];
207 vp[0]=v3[0]-dot*va[0];
208 vp[1]=v3[1]-dot*va[1];
209 vp[2]=v3[2]-dot*va[2];
210
211 double lp = veclen(vp);
212
213 if (lp != 0) {
214
215 /* After this, 'p' is normalized */
216 vp[0] /= lp;
217 vp[1] /= lp;
218 vp[2] /= lp;
219
220 double[] cp1 = crossproduct(v1, vp);
221 double dp1 = dotproduct(cp1, va);
222
223 double[] cp2 = crossproduct(v2, vp);
224 double dp2 = dotproduct(cp2, va);
225
226 if ( dp1 >= 0 && dp2 >= 0 ) {
227 /* rather than call gcdist and all its sines and cosines and
228 * worse, we can get the angle directly. It's the arctangent
229 * of the length of the component of vector 3 along the axis
230 * divided by the length of the component of vector 3 in the
231 * plane. We already have both of those numbers.
232 *
233 * atan2 would be overkill because lp and Math.abs are both
234 * known to be positive. */
235 return Math.atan(Math.abs(dot)/lp);
236 }
237
238 /* otherwise, get the distance from the closest endpoint */
239 double c1 = dotproduct(v1, vp);
240 double c2 = dotproduct(v2, vp);
241 dp1 = Math.abs(dp1);
242 dp2 = Math.abs(dp2);
243
244 /* This is a hack. d$n$ is proportional to the sine of the angle
245 * between point $n$ and point p. That preserves orderedness up
246 * to an angle of 90 degrees. c$n$ is proportional to the cosine
247 * of the same angle; if the angle is over 90 degrees, c$n$ is
248 * negative. In that case, we flop the sine across the y=1 axis
249 * so that the resulting value increases as the angle increases.
250 *
251 * This only works because all of the points are on a unit sphere. */
252
253 if (c1 < 0) {
254 dp1 = 2 - dp1;
255 }
256 if (c2 < 0) {
257 dp2 = 2 - dp2;
258 }
259
260 if (Math.abs(dp1) < Math.abs(dp2)) {
261 return gcdist(lat1,lon1,lat3,lon3);
262 } else {
263 return gcdist(lat2,lon2,lat3,lon3);
264 }
265 } else {
266 /* lp is 0 when 3 is 90 degrees from the great circle */
267 return Math.PI/2;
268 }
269 } else {
270 /* la is 0 when 1 and 2 are either the same point or 180 degrees apart */
271 dot = dotproduct(v1, v2);
272 if (dot >= 0) {
273 return gcdist(lat1,lon1,lat3,lon3);
274 } else {
275 return 0;
276 }
277 }
278 }
279}
Note: See TracBrowser for help on using the repository browser.