1 | /**
|
---|
2 | * Terracer: A JOSM Plugin for terraced houses.
|
---|
3 | *
|
---|
4 | * Copyright 2009 CloudMade Ltd.
|
---|
5 | *
|
---|
6 | * Released under the GPLv2, see LICENSE file for details.
|
---|
7 | */
|
---|
8 | package terracer;
|
---|
9 |
|
---|
10 | import static org.openstreetmap.josm.tools.I18n.tr;
|
---|
11 | import static org.openstreetmap.josm.tools.I18n.trn;
|
---|
12 |
|
---|
13 | import java.awt.event.ActionEvent;
|
---|
14 | import java.awt.event.KeyEvent;
|
---|
15 | import java.util.ArrayList;
|
---|
16 | import java.util.Collection;
|
---|
17 | import java.util.Collections;
|
---|
18 | import java.util.Iterator;
|
---|
19 | import java.util.LinkedList;
|
---|
20 | import java.util.List;
|
---|
21 |
|
---|
22 | import javax.swing.JOptionPane;
|
---|
23 |
|
---|
24 | import org.openstreetmap.josm.Main;
|
---|
25 | import org.openstreetmap.josm.actions.JosmAction;
|
---|
26 | import org.openstreetmap.josm.command.AddCommand;
|
---|
27 | import org.openstreetmap.josm.command.ChangeCommand;
|
---|
28 | import org.openstreetmap.josm.command.Command;
|
---|
29 | import org.openstreetmap.josm.command.DeleteCommand;
|
---|
30 | import org.openstreetmap.josm.command.SequenceCommand;
|
---|
31 | import org.openstreetmap.josm.data.coor.LatLon;
|
---|
32 | import org.openstreetmap.josm.data.osm.Node;
|
---|
33 | import org.openstreetmap.josm.data.osm.OsmPrimitive;
|
---|
34 | import org.openstreetmap.josm.data.osm.Relation;
|
---|
35 | import org.openstreetmap.josm.data.osm.RelationMember;
|
---|
36 | import org.openstreetmap.josm.data.osm.Way;
|
---|
37 | import org.openstreetmap.josm.tools.Pair;
|
---|
38 | import org.openstreetmap.josm.tools.Shortcut;
|
---|
39 |
|
---|
40 | /**
|
---|
41 | * Terraces a quadrilateral, closed way into a series of quadrilateral,
|
---|
42 | * closed ways. If two ways are selected and one of them can be identified as
|
---|
43 | * a street (highway=*, name=*) then the given street will be added
|
---|
44 | * to the 'associatedStreet' relation.
|
---|
45 | *
|
---|
46 | *
|
---|
47 | * At present it only works on quadrilaterals, but there is no reason
|
---|
48 | * why it couldn't be extended to work with other shapes too. The
|
---|
49 | * algorithm employed is naive, but it works in the simple case.
|
---|
50 | *
|
---|
51 | * @author zere
|
---|
52 | */
|
---|
53 | public final class TerracerAction extends JosmAction {
|
---|
54 |
|
---|
55 | // smsms1 asked for the last value to be remembered to make it easier to do
|
---|
56 | // repeated terraces. this is the easiest, but not necessarily nicest, way.
|
---|
57 | // private static String lastSelectedValue = "";
|
---|
58 |
|
---|
59 | public TerracerAction() {
|
---|
60 | super(tr("Terrace a building"), "terrace",
|
---|
61 | tr("Creates individual buildings from a long building."),
|
---|
62 | Shortcut.registerShortcut("tools:Terracer", tr("Tool: {0}",
|
---|
63 | tr("Terrace a building")), KeyEvent.VK_T,
|
---|
64 | Shortcut.GROUP_EDIT, Shortcut.SHIFT_DEFAULT), true);
|
---|
65 | }
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * Checks that the selection is OK. If not, displays error message. If so
|
---|
69 | * calls to terraceBuilding(), which does all the real work.
|
---|
70 | */
|
---|
71 | public void actionPerformed(ActionEvent e) {
|
---|
72 | Collection<OsmPrimitive> sel = Main.main.getCurrentDataSet()
|
---|
73 | .getSelected();
|
---|
74 | Way outline = null;
|
---|
75 | Way street = null;
|
---|
76 |
|
---|
77 | class InvalidUserInputException extends Exception {
|
---|
78 | InvalidUserInputException(String message) {
|
---|
79 | super(message);
|
---|
80 | }
|
---|
81 | InvalidUserInputException() {
|
---|
82 | super();
|
---|
83 | }
|
---|
84 | }
|
---|
85 |
|
---|
86 | try {
|
---|
87 | if (sel.size() == 2) {
|
---|
88 | Iterator<OsmPrimitive> it = sel.iterator();
|
---|
89 | OsmPrimitive prim1 = it.next();
|
---|
90 | OsmPrimitive prim2 = it.next();
|
---|
91 | if (!(prim1 instanceof Way && prim2 instanceof Way))
|
---|
92 | throw new InvalidUserInputException();
|
---|
93 | Way way1 = (Way) prim1;
|
---|
94 | Way way2 = (Way) prim2;
|
---|
95 | if (way2.get("highway") != null) {
|
---|
96 | street = way2;
|
---|
97 | outline = way1;
|
---|
98 | } else if (way1.get("highway") != null) {
|
---|
99 | street = way1;
|
---|
100 | outline = way2;
|
---|
101 | } else
|
---|
102 | throw new InvalidUserInputException();
|
---|
103 | if (street.get("name") == null)
|
---|
104 | throw new InvalidUserInputException();
|
---|
105 |
|
---|
106 | } else if (sel.size() == 1) {
|
---|
107 | OsmPrimitive prim = sel.iterator().next();
|
---|
108 |
|
---|
109 | if (!(prim instanceof Way))
|
---|
110 | throw new InvalidUserInputException();
|
---|
111 |
|
---|
112 | outline = (Way)prim;
|
---|
113 | } else
|
---|
114 | throw new InvalidUserInputException();
|
---|
115 |
|
---|
116 | if (outline.getNodesCount() < 5)
|
---|
117 | throw new InvalidUserInputException();
|
---|
118 |
|
---|
119 | if (!outline.isClosed())
|
---|
120 | throw new InvalidUserInputException();
|
---|
121 | } catch (InvalidUserInputException ex) {
|
---|
122 | JOptionPane.showMessageDialog(Main.parent,
|
---|
123 | tr("Select a single, closed way of at least four nodes."));
|
---|
124 | return;
|
---|
125 | }
|
---|
126 |
|
---|
127 | // If we have a street, try to find a associatedStreet relation that could be reused.
|
---|
128 | Relation associatedStreet = null;
|
---|
129 | if (street != null) {
|
---|
130 | outer:for (OsmPrimitive osm : Main.main.getCurrentDataSet().allNonDeletedPrimitives()) {
|
---|
131 | if (!(osm instanceof Relation)) continue;
|
---|
132 | Relation rel = (Relation) osm;
|
---|
133 | if ("associatedStreet".equals(rel.get("type")) && street.get("name").equals(rel.get("name"))) {
|
---|
134 | List<RelationMember> members = rel.getMembers();
|
---|
135 | for (RelationMember m : members) {
|
---|
136 | if ("street".equals(m.getRole()) && m.isWay() && m.getMember().equals(street)) {
|
---|
137 | associatedStreet = rel;
|
---|
138 | break outer;
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|
142 | }
|
---|
143 | }
|
---|
144 |
|
---|
145 | String title = trn("Change {0} object", "Change {0} objects", sel.size(), sel.size());
|
---|
146 | // show input dialog.
|
---|
147 | new HouseNumberInputHandler(this, outline, street, associatedStreet, title);
|
---|
148 | }
|
---|
149 |
|
---|
150 | /**
|
---|
151 | * Terraces a single, closed, quadrilateral way.
|
---|
152 | *
|
---|
153 | * Any node must be adjacent to both a short and long edge, we naively
|
---|
154 | * choose the longest edge and its opposite and interpolate along them
|
---|
155 | * linearly to produce new nodes. Those nodes are then assembled into
|
---|
156 | * closed, quadrilateral ways and left in the selection.
|
---|
157 | *
|
---|
158 | * @param outline The closed, quadrilateral way to terrace.
|
---|
159 | * @param street The street, the buildings belong to (may be null)
|
---|
160 | * @param handleRelations If the user likes to add a relation or extend an existing relation
|
---|
161 | * @param deleteOutline If the outline way should be deleted, when done
|
---|
162 | */
|
---|
163 | public void terraceBuilding(Way outline, Way street, Relation associatedStreet, Integer segments, Integer from,
|
---|
164 | Integer to, int step, String streetName, boolean handleRelations, boolean deleteOutline) {
|
---|
165 | final int nb;
|
---|
166 | if (to != null && from != null) {
|
---|
167 | nb = 1 + (to.intValue() - from.intValue()) / step;
|
---|
168 | } else if (segments != null) {
|
---|
169 | nb = segments.intValue();
|
---|
170 | } else {
|
---|
171 | // if we get here, there is is a bug in the input validation.
|
---|
172 | throw new TerracerRuntimeException(
|
---|
173 | "Could not determine segments from parameters, this is a bug. "
|
---|
174 | + "Parameters were: segments " + segments
|
---|
175 | + " from " + from + " to " + to + " step " + step);
|
---|
176 | }
|
---|
177 |
|
---|
178 | // now find which is the longest side connecting the first node
|
---|
179 | Pair<Way, Way> interp = findFrontAndBack(outline);
|
---|
180 |
|
---|
181 | final double frontLength = wayLength(interp.a);
|
---|
182 | final double backLength = wayLength(interp.b);
|
---|
183 |
|
---|
184 | // new nodes array to hold all intermediate nodes
|
---|
185 | Node[][] new_nodes = new Node[2][nb + 1];
|
---|
186 |
|
---|
187 | Collection<Command> commands = new LinkedList<Command>();
|
---|
188 | Collection<Way> ways = new LinkedList<Way>();
|
---|
189 |
|
---|
190 | // create intermediate nodes by interpolating.
|
---|
191 | for (int i = 0; i <= nb; ++i) {
|
---|
192 | new_nodes[0][i] = interpolateAlong(interp.a, frontLength * (i)
|
---|
193 | / (nb));
|
---|
194 | new_nodes[1][i] = interpolateAlong(interp.b, backLength * (i)
|
---|
195 | / (nb));
|
---|
196 | commands.add(new AddCommand(new_nodes[0][i]));
|
---|
197 | commands.add(new AddCommand(new_nodes[1][i]));
|
---|
198 | }
|
---|
199 |
|
---|
200 | // assemble new quadrilateral, closed ways
|
---|
201 | for (int i = 0; i < nb; ++i) {
|
---|
202 | Way terr = new Way();
|
---|
203 | // Using Way.nodes.add rather than Way.addNode because the latter
|
---|
204 | // doesn't
|
---|
205 | // exist in older versions of JOSM.
|
---|
206 | terr.addNode(new_nodes[0][i]);
|
---|
207 | terr.addNode(new_nodes[0][i + 1]);
|
---|
208 | terr.addNode(new_nodes[1][i + 1]);
|
---|
209 | terr.addNode(new_nodes[1][i]);
|
---|
210 | terr.addNode(new_nodes[0][i]);
|
---|
211 | if (from != null) {
|
---|
212 | // only, if the user has specified house numbers
|
---|
213 | terr.put("addr:housenumber", "" + (from + i * step));
|
---|
214 | }
|
---|
215 | terr.put("building", "yes");
|
---|
216 | if (street != null) {
|
---|
217 | terr.put("addr:street", street.get("name"));
|
---|
218 | } else if (streetName != null) {
|
---|
219 | terr.put("addr:street", streetName);
|
---|
220 | }
|
---|
221 | ways.add(terr);
|
---|
222 | commands.add(new AddCommand(terr));
|
---|
223 | }
|
---|
224 |
|
---|
225 | if (handleRelations) { // create a new relation or merge with existing
|
---|
226 | if (associatedStreet == null) { // create a new relation
|
---|
227 | associatedStreet = new Relation();
|
---|
228 | associatedStreet.put("type", "associatedStreet");
|
---|
229 | if (street != null) { // a street was part of the selection
|
---|
230 | associatedStreet.put("name", street.get("name"));
|
---|
231 | associatedStreet.addMember(new RelationMember("street", street));
|
---|
232 | } else {
|
---|
233 | associatedStreet.put("name", streetName);
|
---|
234 | }
|
---|
235 | for (Way w : ways) {
|
---|
236 | associatedStreet.addMember(new RelationMember("house", w));
|
---|
237 | }
|
---|
238 | commands.add(new AddCommand(associatedStreet));
|
---|
239 | }
|
---|
240 | else { // relation exists already - add new members
|
---|
241 | Relation newAssociatedStreet = new Relation(associatedStreet);
|
---|
242 | for (Way w : ways) {
|
---|
243 | newAssociatedStreet.addMember(new RelationMember("house", w));
|
---|
244 | }
|
---|
245 | commands.add(new ChangeCommand(associatedStreet, newAssociatedStreet));
|
---|
246 | }
|
---|
247 | }
|
---|
248 |
|
---|
249 | if (deleteOutline) {
|
---|
250 | commands.add(DeleteCommand.delete(Main.main.getEditLayer(), Collections.singleton(outline), true, true));
|
---|
251 | }
|
---|
252 |
|
---|
253 | Main.main.undoRedo.add(new SequenceCommand(tr("Terrace"), commands));
|
---|
254 | Main.main.getCurrentDataSet().setSelected(ways);
|
---|
255 | }
|
---|
256 |
|
---|
257 | /**
|
---|
258 | * Creates a node at a certain distance along a way, as calculated by the
|
---|
259 | * great circle distance.
|
---|
260 | *
|
---|
261 | * Note that this really isn't an efficient way to do this and leads to
|
---|
262 | * O(N^2) running time for the main algorithm, but its simple and easy
|
---|
263 | * to understand, and probably won't matter for reasonable-sized ways.
|
---|
264 | *
|
---|
265 | * @param w The way to interpolate.
|
---|
266 | * @param l The length at which to place the node.
|
---|
267 | * @return A node at a distance l along w from the first point.
|
---|
268 | */
|
---|
269 | private Node interpolateAlong(Way w, double l) {
|
---|
270 | List<Pair<Node,Node>> pairs = w.getNodePairs(false);
|
---|
271 | for (int i = 0; i < pairs.size(); ++i) {
|
---|
272 | Pair<Node,Node> p = pairs.get(i);
|
---|
273 | final double seg_length = p.a.getCoor().greatCircleDistance(p.b.getCoor());
|
---|
274 | if (l <= seg_length ||
|
---|
275 | i == pairs.size() - 1) { // be generous on the last segment (numerical roudoff can lead to a small overshoot)
|
---|
276 | return interpolateNode(p.a, p.b, l / seg_length);
|
---|
277 | } else {
|
---|
278 | l -= seg_length;
|
---|
279 | }
|
---|
280 | }
|
---|
281 | // we shouldn't get here
|
---|
282 | throw new IllegalStateException();
|
---|
283 | }
|
---|
284 |
|
---|
285 | /**
|
---|
286 | * Calculates the great circle length of a way by summing the great circle
|
---|
287 | * distance of each pair of nodes.
|
---|
288 | *
|
---|
289 | * @param w The way to calculate length of.
|
---|
290 | * @return The length of the way.
|
---|
291 | */
|
---|
292 | private double wayLength(Way w) {
|
---|
293 | double length = 0.0;
|
---|
294 | for (Pair<Node, Node> p : w.getNodePairs(false)) {
|
---|
295 | length += p.a.getCoor().greatCircleDistance(p.b.getCoor());
|
---|
296 | }
|
---|
297 | return length;
|
---|
298 | }
|
---|
299 |
|
---|
300 | /**
|
---|
301 | * Given a way, try and find a definite front and back by looking at the
|
---|
302 | * segments to find the "sides". Sides are assumed to be single segments
|
---|
303 | * which cannot be contiguous.
|
---|
304 | *
|
---|
305 | * @param w The way to analyse.
|
---|
306 | * @return A pair of ways (front, back) pointing in the same directions.
|
---|
307 | */
|
---|
308 | private Pair<Way, Way> findFrontAndBack(Way w) {
|
---|
309 | // calculate the "side-ness" score for each segment of the way
|
---|
310 | double[] sideness = calculateSideness(w);
|
---|
311 |
|
---|
312 | // find the largest two sidenesses which are not contiguous
|
---|
313 | int[] indexes = sortedIndexes(sideness);
|
---|
314 | int side1 = indexes[0];
|
---|
315 | int side2 = indexes[1];
|
---|
316 | // if side2 is contiguous with side1 then look further down the
|
---|
317 | // list. we know there are at least 4 sides, as anything smaller
|
---|
318 | // than a quadrilateral would have been rejected at an earlier
|
---|
319 | // stage.
|
---|
320 | if (Math.abs(side1 - side2) < 2) {
|
---|
321 | side2 = indexes[2];
|
---|
322 | }
|
---|
323 | if (Math.abs(side1 - side2) < 2) {
|
---|
324 | side2 = indexes[3];
|
---|
325 | }
|
---|
326 |
|
---|
327 | // if the second side has a shorter length and an approximately equal
|
---|
328 | // sideness then its better to choose the shorter, as with
|
---|
329 | // quadrilaterals
|
---|
330 | // created using the orthogonalise tool the sideness will be about the
|
---|
331 | // same for all sides.
|
---|
332 | if (sideLength(w, side1) > sideLength(w, side1 + 1)
|
---|
333 | && Math.abs(sideness[side1] - sideness[side1 + 1]) < 0.001) {
|
---|
334 | side1 = side1 + 1;
|
---|
335 | side2 = (side2 + 1) % (w.getNodesCount() - 1);
|
---|
336 | }
|
---|
337 |
|
---|
338 | // swap side1 and side2 into sorted order.
|
---|
339 | if (side1 > side2) {
|
---|
340 | int tmp = side2;
|
---|
341 | side2 = side1;
|
---|
342 | side1 = tmp;
|
---|
343 | }
|
---|
344 |
|
---|
345 | Way front = new Way();
|
---|
346 | Way back = new Way();
|
---|
347 | for (int i = side2 + 1; i < w.getNodesCount() - 1; ++i) {
|
---|
348 | front.addNode(w.getNode(i));
|
---|
349 | }
|
---|
350 | for (int i = 0; i <= side1; ++i) {
|
---|
351 | front.addNode(w.getNode(i));
|
---|
352 | }
|
---|
353 | // add the back in reverse order so that the front and back ways point
|
---|
354 | // in the same direction.
|
---|
355 | for (int i = side2; i > side1; --i) {
|
---|
356 | back.addNode(w.getNode(i));
|
---|
357 | }
|
---|
358 |
|
---|
359 | return new Pair<Way, Way>(front, back);
|
---|
360 | }
|
---|
361 |
|
---|
362 | /**
|
---|
363 | * Calculate the length of a side (from node i to i+1) in a way. This assumes that
|
---|
364 | * the way is closed, but I only ever call it for buildings.
|
---|
365 | */
|
---|
366 | private double sideLength(Way w, int i) {
|
---|
367 | Node a = w.getNode(i);
|
---|
368 | Node b = w.getNode((i + 1) % (w.getNodesCount() - 1));
|
---|
369 | return a.getCoor().greatCircleDistance(b.getCoor());
|
---|
370 | }
|
---|
371 |
|
---|
372 | /**
|
---|
373 | * Given an array of doubles (but this could made generic very easily) sort
|
---|
374 | * into order and return the array of indexes such that, for a returned array
|
---|
375 | * x, a[x[i]] is sorted for ascending index i.
|
---|
376 | *
|
---|
377 | * This isn't efficient at all, but should be fine for the small arrays we're
|
---|
378 | * expecting. If this gets slow - replace it with some more efficient algorithm.
|
---|
379 | *
|
---|
380 | * @param a The array to sort.
|
---|
381 | * @return An array of indexes, the same size as the input, such that a[x[i]]
|
---|
382 | * is in sorted order.
|
---|
383 | */
|
---|
384 | private int[] sortedIndexes(final double[] a) {
|
---|
385 | class SortWithIndex implements Comparable<SortWithIndex> {
|
---|
386 | public double x;
|
---|
387 | public int i;
|
---|
388 |
|
---|
389 | public SortWithIndex(double a, int b) {
|
---|
390 | x = a;
|
---|
391 | i = b;
|
---|
392 | }
|
---|
393 |
|
---|
394 | public int compareTo(SortWithIndex o) {
|
---|
395 | return Double.compare(x, o.x);
|
---|
396 | };
|
---|
397 | }
|
---|
398 |
|
---|
399 | final int length = a.length;
|
---|
400 | ArrayList<SortWithIndex> sortable = new ArrayList<SortWithIndex>(length);
|
---|
401 | for (int i = 0; i < length; ++i) {
|
---|
402 | sortable.add(new SortWithIndex(a[i], i));
|
---|
403 | }
|
---|
404 | Collections.sort(sortable);
|
---|
405 |
|
---|
406 | int[] indexes = new int[length];
|
---|
407 | for (int i = 0; i < length; ++i) {
|
---|
408 | indexes[i] = sortable.get(i).i;
|
---|
409 | }
|
---|
410 |
|
---|
411 | return indexes;
|
---|
412 | }
|
---|
413 |
|
---|
414 | /**
|
---|
415 | * Calculate "sideness" metric for each segment in a way.
|
---|
416 | */
|
---|
417 | private double[] calculateSideness(Way w) {
|
---|
418 | final int length = w.getNodesCount() - 1;
|
---|
419 | double[] sideness = new double[length];
|
---|
420 |
|
---|
421 | sideness[0] = calculateSideness(w.getNode(length - 1), w.getNode(0), w
|
---|
422 | .getNode(1), w.getNode(2));
|
---|
423 | for (int i = 1; i < length - 1; ++i) {
|
---|
424 | sideness[i] = calculateSideness(w.getNode(i - 1), w.getNode(i), w
|
---|
425 | .getNode(i + 1), w.getNode(i + 2));
|
---|
426 | }
|
---|
427 | sideness[length - 1] = calculateSideness(w.getNode(length - 2), w
|
---|
428 | .getNode(length - 1), w.getNode(length), w.getNode(1));
|
---|
429 |
|
---|
430 | return sideness;
|
---|
431 | }
|
---|
432 |
|
---|
433 | /**
|
---|
434 | * Calculate sideness of a single segment given the nodes which make up that
|
---|
435 | * segment and its previous and next segments in order. Sideness is calculated
|
---|
436 | * for the segment b-c.
|
---|
437 | */
|
---|
438 | private double calculateSideness(Node a, Node b, Node c, Node d) {
|
---|
439 | final double ndx = b.getCoor().getX() - a.getCoor().getX();
|
---|
440 | final double pdx = d.getCoor().getX() - c.getCoor().getX();
|
---|
441 | final double ndy = b.getCoor().getY() - a.getCoor().getY();
|
---|
442 | final double pdy = d.getCoor().getY() - c.getCoor().getY();
|
---|
443 |
|
---|
444 | return (ndx * pdx + ndy * pdy)
|
---|
445 | / Math.sqrt((ndx * ndx + ndy * ndy) * (pdx * pdx + pdy * pdy));
|
---|
446 | }
|
---|
447 |
|
---|
448 | /**
|
---|
449 | * Creates a new node at the interpolated position between the argument
|
---|
450 | * nodes. Interpolates linearly in projected coordinates.
|
---|
451 | *
|
---|
452 | * @param a First node, at which f=0.
|
---|
453 | * @param b Last node, at which f=1.
|
---|
454 | * @param f Fractional position between first and last nodes.
|
---|
455 | * @return A new node at the interpolated position.
|
---|
456 | */
|
---|
457 | private Node interpolateNode(Node a, Node b, double f) {
|
---|
458 | Node n = new Node(a.getEastNorth().interpolate(b.getEastNorth(), f));
|
---|
459 | return n;
|
---|
460 | }
|
---|
461 | }
|
---|