[4256] | 1 | /*****************************************************************************
|
---|
| 2 | * Copyright (C) The Apache Software Foundation. All rights reserved. *
|
---|
| 3 | * ------------------------------------------------------------------------- *
|
---|
| 4 | * This software is published under the terms of the Apache Software License *
|
---|
| 5 | * version 1.1, a copy of which has been included with this distribution in *
|
---|
| 6 | * the LICENSE file. *
|
---|
| 7 | *****************************************************************************/
|
---|
| 8 |
|
---|
| 9 | package com.kitfox.svg.batik;
|
---|
| 10 |
|
---|
| 11 | import java.awt.Color;
|
---|
| 12 | import java.awt.Rectangle;
|
---|
| 13 | import java.awt.RenderingHints;
|
---|
| 14 | import java.awt.geom.AffineTransform;
|
---|
| 15 | import java.awt.geom.NoninvertibleTransformException;
|
---|
| 16 | import java.awt.geom.Rectangle2D;
|
---|
| 17 | import java.awt.image.ColorModel;
|
---|
| 18 |
|
---|
| 19 | /**
|
---|
| 20 | * Provides the actual implementation for the RadialGradientPaint.
|
---|
| 21 | * This is where the pixel processing is done. A RadialGradienPaint
|
---|
| 22 | * only supports circular gradients, but it should be possible to scale
|
---|
| 23 | * the circle to look approximately elliptical, by means of a
|
---|
| 24 | * gradient transform passed into the RadialGradientPaint constructor.
|
---|
| 25 | *
|
---|
| 26 | * @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
|
---|
| 27 | * @author <a href="mailto:vincent.hardy@eng.sun.com">Vincent Hardy</a>
|
---|
| 28 | * @version $Id: RadialGradientPaintContext.java,v 1.2 2005/10/12 20:36:55 kitfox Exp $
|
---|
| 29 | *
|
---|
| 30 | */
|
---|
| 31 | final class RadialGradientPaintContext extends MultipleGradientPaintContext {
|
---|
| 32 |
|
---|
| 33 | /** True when (focus == center) */
|
---|
| 34 | private boolean isSimpleFocus = false;
|
---|
| 35 |
|
---|
| 36 | /** True when (cycleMethod == NO_CYCLE) */
|
---|
| 37 | private boolean isNonCyclic = false;
|
---|
| 38 |
|
---|
| 39 | /** Radius of the outermost circle defining the 100% gradient stop. */
|
---|
| 40 | private float radius;
|
---|
| 41 |
|
---|
| 42 | /** Variables representing center and focus points. */
|
---|
| 43 | private float centerX, centerY, focusX, focusY;
|
---|
| 44 |
|
---|
| 45 | /** Radius of the gradient circle squared. */
|
---|
| 46 | private float radiusSq;
|
---|
| 47 |
|
---|
| 48 | /** Constant part of X, Y user space coordinates. */
|
---|
| 49 | private float constA, constB;
|
---|
| 50 |
|
---|
| 51 | /** This value represents the solution when focusX == X. It is called
|
---|
| 52 | * trivial because it is easier to calculate than the general case.
|
---|
| 53 | */
|
---|
| 54 | private float trivial;
|
---|
| 55 |
|
---|
| 56 | private static final int FIXED_POINT_IMPL = 1;
|
---|
| 57 | private static final int DEFAULT_IMPL = 2;
|
---|
| 58 | private static final int ANTI_ALIAS_IMPL = 3;
|
---|
| 59 |
|
---|
| 60 | private int fillMethod;
|
---|
| 61 |
|
---|
| 62 | /** Amount for offset when clamping focus. */
|
---|
| 63 | private static final float SCALEBACK = .97f;
|
---|
| 64 |
|
---|
| 65 | /**
|
---|
| 66 | * Constructor for RadialGradientPaintContext.
|
---|
| 67 | *
|
---|
| 68 | * @param cm {@link ColorModel} that receives
|
---|
| 69 | * the <code>Paint</code> data. This is used only as a hint.
|
---|
| 70 | *
|
---|
| 71 | * @param deviceBounds the device space bounding box of the
|
---|
| 72 | * graphics primitive being rendered
|
---|
| 73 | *
|
---|
| 74 | * @param userBounds the user space bounding box of the
|
---|
| 75 | * graphics primitive being rendered
|
---|
| 76 | *
|
---|
| 77 | * @param t the {@link AffineTransform} from user
|
---|
| 78 | * space into device space (gradientTransform should be
|
---|
| 79 | * concatenated with this)
|
---|
| 80 | *
|
---|
| 81 | * @param hints the hints that the context object uses to choose
|
---|
| 82 | * between rendering alternatives
|
---|
| 83 | *
|
---|
| 84 | * @param cx the center point in user space of the circle defining
|
---|
| 85 | * the gradient. The last color of the gradient is mapped to the
|
---|
| 86 | * perimeter of this circle X coordinate
|
---|
| 87 | *
|
---|
| 88 | * @param cy the center point in user space of the circle defining
|
---|
| 89 | * the gradient. The last color of the gradient is mapped to the
|
---|
| 90 | * perimeter of this circle Y coordinate
|
---|
| 91 | *
|
---|
| 92 | * @param r the radius of the circle defining the extents of the
|
---|
| 93 | * color gradient
|
---|
| 94 | *
|
---|
| 95 | * @param fx the point in user space to which the first color is mapped
|
---|
| 96 | * X coordinate
|
---|
| 97 | *
|
---|
| 98 | * @param fy the point in user space to which the first color is mapped
|
---|
| 99 | * Y coordinate
|
---|
| 100 | *
|
---|
| 101 | * @param fractions the fractions specifying the gradient distribution
|
---|
| 102 | *
|
---|
| 103 | * @param colors the gradient colors
|
---|
| 104 | *
|
---|
| 105 | * @param cycleMethod either NO_CYCLE, REFLECT, or REPEAT
|
---|
| 106 | *
|
---|
| 107 | * @param colorSpace which colorspace to use for interpolation,
|
---|
| 108 | * either SRGB or LINEAR_RGB
|
---|
| 109 | *
|
---|
| 110 | */
|
---|
| 111 | public RadialGradientPaintContext(ColorModel cm,
|
---|
| 112 | Rectangle deviceBounds,
|
---|
| 113 | Rectangle2D userBounds,
|
---|
| 114 | AffineTransform t,
|
---|
| 115 | RenderingHints hints,
|
---|
| 116 | float cx, float cy,
|
---|
| 117 | float r,
|
---|
| 118 | float fx, float fy,
|
---|
| 119 | float[] fractions,
|
---|
| 120 | Color[] colors,
|
---|
| 121 | MultipleGradientPaint.CycleMethodEnum
|
---|
| 122 | cycleMethod,
|
---|
| 123 | MultipleGradientPaint.ColorSpaceEnum
|
---|
| 124 | colorSpace)
|
---|
| 125 | throws NoninvertibleTransformException
|
---|
| 126 | {
|
---|
| 127 | super(cm, deviceBounds, userBounds, t, hints, fractions, colors,
|
---|
| 128 | cycleMethod, colorSpace);
|
---|
| 129 |
|
---|
| 130 | //copy some parameters.
|
---|
| 131 | centerX = cx;
|
---|
| 132 | centerY = cy;
|
---|
| 133 | focusX = fx;
|
---|
| 134 | focusY = fy;
|
---|
| 135 | radius = r;
|
---|
| 136 |
|
---|
| 137 | this.isSimpleFocus = (focusX == centerX) && (focusY == centerY);
|
---|
| 138 | this.isNonCyclic = (cycleMethod == RadialGradientPaint.NO_CYCLE);
|
---|
| 139 |
|
---|
| 140 | //for use in the quadractic equation
|
---|
| 141 | radiusSq = radius * radius;
|
---|
| 142 |
|
---|
| 143 | float dX = focusX - centerX;
|
---|
| 144 | float dY = focusY - centerY;
|
---|
| 145 |
|
---|
| 146 | double dist = Math.sqrt((dX * dX) + (dY * dY));
|
---|
| 147 |
|
---|
| 148 | //test if distance from focus to center is greater than the radius
|
---|
| 149 | if (dist > radius* SCALEBACK) { //clamp focus to radius
|
---|
| 150 | double angle = Math.atan2(dY, dX);
|
---|
| 151 |
|
---|
| 152 | //x = r cos theta, y = r sin theta
|
---|
| 153 | focusX = (float)(SCALEBACK * radius * Math.cos(angle)) + centerX;
|
---|
| 154 |
|
---|
| 155 | focusY = (float)(SCALEBACK * radius * Math.sin(angle)) + centerY;
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | //calculate the solution to be used in the case where X == focusX
|
---|
| 159 | //in cyclicCircularGradientFillRaster
|
---|
| 160 | dX = focusX - centerX;
|
---|
| 161 | trivial = (float)Math.sqrt(radiusSq - (dX * dX));
|
---|
| 162 |
|
---|
| 163 | // constant parts of X, Y user space coordinates
|
---|
| 164 | constA = a02 - centerX;
|
---|
| 165 | constB = a12 - centerY;
|
---|
| 166 |
|
---|
| 167 | Object colorRend;
|
---|
| 168 | Object rend;
|
---|
| 169 | //hints can be null on Mac OSX
|
---|
| 170 | if (hints == null)
|
---|
| 171 | {
|
---|
| 172 | colorRend = RenderingHints.VALUE_COLOR_RENDER_DEFAULT;
|
---|
| 173 | rend = RenderingHints.VALUE_RENDER_DEFAULT;
|
---|
| 174 | }
|
---|
| 175 | else
|
---|
| 176 | {
|
---|
| 177 | colorRend = hints.get(RenderingHints.KEY_COLOR_RENDERING);
|
---|
| 178 | rend = hints.get(RenderingHints.KEY_RENDERING);
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | fillMethod = 0;
|
---|
| 182 |
|
---|
| 183 | if ((rend == RenderingHints.VALUE_RENDER_QUALITY) ||
|
---|
| 184 | (colorRend == RenderingHints.VALUE_COLOR_RENDER_QUALITY)) {
|
---|
| 185 | // System.out.println("AAHints set: " + rend + ", " + colorRend);
|
---|
| 186 | fillMethod = ANTI_ALIAS_IMPL;
|
---|
| 187 | }
|
---|
| 188 |
|
---|
| 189 | if ((rend == RenderingHints.VALUE_RENDER_SPEED) ||
|
---|
| 190 | (colorRend == RenderingHints.VALUE_COLOR_RENDER_SPEED)) {
|
---|
| 191 | // System.out.println("SPHints set: " + rend + ", " + colorRend);
|
---|
| 192 | fillMethod = DEFAULT_IMPL;
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 | // We are in the 'default' case, no hint or hint set to
|
---|
| 196 | // DEFAULT values...
|
---|
| 197 | if (fillMethod == 0) {
|
---|
| 198 | // For now we will always use the 'default' impl if
|
---|
| 199 | // one is not specified.
|
---|
| 200 | fillMethod = DEFAULT_IMPL;
|
---|
| 201 |
|
---|
| 202 | if (false) {
|
---|
| 203 | // This could be used for a 'smart' choice in
|
---|
| 204 | // the default case, if the gradient has obvious
|
---|
| 205 | // discontinuites use AA, otherwise default
|
---|
| 206 | if (hasDiscontinuity) {
|
---|
| 207 | fillMethod = ANTI_ALIAS_IMPL;
|
---|
| 208 | } else {
|
---|
| 209 | fillMethod = DEFAULT_IMPL;
|
---|
| 210 | }
|
---|
| 211 | }
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | if ((fillMethod == DEFAULT_IMPL) &&
|
---|
| 215 | (isSimpleFocus && isNonCyclic && isSimpleLookup)) {
|
---|
| 216 | this.calculateFixedPointSqrtLookupTable();
|
---|
| 217 | fillMethod = FIXED_POINT_IMPL;
|
---|
| 218 | }
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | /**
|
---|
| 222 | * Return a Raster containing the colors generated for the graphics
|
---|
| 223 | * operation.
|
---|
| 224 | * @param x,y,w,h The area in device space for which colors are
|
---|
| 225 | * generated.
|
---|
| 226 | */
|
---|
| 227 | protected void fillRaster(int pixels[], int off, int adjust,
|
---|
| 228 | int x, int y, int w, int h) {
|
---|
| 229 | switch(fillMethod) {
|
---|
| 230 | case FIXED_POINT_IMPL:
|
---|
| 231 | // System.out.println("Calling FP");
|
---|
| 232 | fixedPointSimplestCaseNonCyclicFillRaster(pixels, off, adjust, x,
|
---|
| 233 | y, w, h);
|
---|
| 234 | break;
|
---|
| 235 | case ANTI_ALIAS_IMPL:
|
---|
| 236 | // System.out.println("Calling AA");
|
---|
| 237 | antiAliasFillRaster(pixels, off, adjust, x, y, w, h);
|
---|
| 238 | break;
|
---|
| 239 | case DEFAULT_IMPL:
|
---|
| 240 | default:
|
---|
| 241 | // System.out.println("Calling Default");
|
---|
| 242 | cyclicCircularGradientFillRaster(pixels, off, adjust, x, y, w, h);
|
---|
| 243 | }
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | /**
|
---|
| 247 | * This code works in the simplest of cases, where the focus == center
|
---|
| 248 | * point, the gradient is noncyclic, and the gradient lookup method is
|
---|
| 249 | * fast (single array index, no conversion necessary).
|
---|
| 250 | *
|
---|
| 251 | */
|
---|
| 252 | private void fixedPointSimplestCaseNonCyclicFillRaster(int pixels[],
|
---|
| 253 | int off,
|
---|
| 254 | int adjust,
|
---|
| 255 | int x, int y,
|
---|
| 256 | int w, int h) {
|
---|
| 257 | float iSq=0; // Square distance index
|
---|
| 258 | final float indexFactor = fastGradientArraySize / radius;
|
---|
| 259 |
|
---|
| 260 | //constant part of X and Y coordinates for the entire raster
|
---|
| 261 | final float constX = (a00*x) + (a01*y) + constA;
|
---|
| 262 | final float constY = (a10*x) + (a11*y) + constB;
|
---|
| 263 | final float deltaX = indexFactor * a00; //incremental change in dX
|
---|
| 264 | final float deltaY = indexFactor * a10; //incremental change in dY
|
---|
| 265 | float dX, dY; //the current distance from center
|
---|
| 266 | final int fixedArraySizeSq=
|
---|
| 267 | (fastGradientArraySize * fastGradientArraySize);
|
---|
| 268 | float g, gDelta, gDeltaDelta, temp; //gradient square value
|
---|
| 269 | int gIndex; // integer number used to index gradient array
|
---|
| 270 | int iSqInt; // Square distance index
|
---|
| 271 |
|
---|
| 272 | int end, j; //indexing variables
|
---|
| 273 | int indexer = off;//used to index pixels array
|
---|
| 274 |
|
---|
| 275 | temp = ((deltaX * deltaX) + (deltaY * deltaY));
|
---|
| 276 | gDeltaDelta = ((temp * 2));
|
---|
| 277 |
|
---|
| 278 | if (temp > fixedArraySizeSq) {
|
---|
| 279 | // This combination of scale and circle radius means
|
---|
| 280 | // essentially no pixels will be anything but the end
|
---|
| 281 | // stop color. This also avoids math problems.
|
---|
| 282 | final int val = gradientOverflow;
|
---|
| 283 | for(j = 0; j < h; j++){ //for every row
|
---|
| 284 | //for every column (inner loop begins here)
|
---|
| 285 | for (end = indexer+w; indexer < end; indexer++)
|
---|
| 286 | pixels[indexer] = val;
|
---|
| 287 | indexer += adjust;
|
---|
| 288 | }
|
---|
| 289 | return;
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | // For every point in the raster, calculate the color at that point
|
---|
| 293 | for(j = 0; j < h; j++){ //for every row
|
---|
| 294 | //x and y (in user space) of the first pixel of this row
|
---|
| 295 | dX = indexFactor * ((a01*j) + constX);
|
---|
| 296 | dY = indexFactor * ((a11*j) + constY);
|
---|
| 297 |
|
---|
| 298 | // these values below here allow for an incremental calculation
|
---|
| 299 | // of dX^2 + dY^2
|
---|
| 300 |
|
---|
| 301 | //initialize to be equal to distance squared
|
---|
| 302 | g = (((dY * dY) + (dX * dX)) );
|
---|
| 303 | gDelta = (((((deltaY * dY) + (deltaX * dX))* 2) +
|
---|
| 304 | temp));
|
---|
| 305 |
|
---|
| 306 | //for every column (inner loop begins here)
|
---|
| 307 | for (end = indexer+w; indexer < end; indexer++) {
|
---|
| 308 | //determine the distance to the center
|
---|
| 309 |
|
---|
| 310 | //since this is a non cyclic fill raster, crop at "1" and 0
|
---|
| 311 | if (g >= fixedArraySizeSq) {
|
---|
| 312 | pixels[indexer] = gradientOverflow;
|
---|
| 313 | }
|
---|
| 314 |
|
---|
| 315 | // This should not happen as gIndex is a square
|
---|
| 316 | // quantity. Code commented out on purpose, can't underflow.
|
---|
| 317 | // else if (g < 0) {
|
---|
| 318 | // gIndex = 0;
|
---|
| 319 | // }
|
---|
| 320 |
|
---|
| 321 | else {
|
---|
| 322 | iSq = (g * invSqStepFloat);
|
---|
| 323 |
|
---|
| 324 | iSqInt = (int)iSq; //chop off fractional part
|
---|
| 325 | iSq -= iSqInt;
|
---|
| 326 | gIndex = sqrtLutFixed[iSqInt];
|
---|
| 327 | gIndex += (int)(iSq * (sqrtLutFixed[iSqInt + 1]-gIndex));
|
---|
| 328 | pixels[indexer] = gradient[gIndex];
|
---|
| 329 | }
|
---|
| 330 |
|
---|
| 331 |
|
---|
| 332 | //incremental calculation
|
---|
| 333 | g += gDelta;
|
---|
| 334 | gDelta += gDeltaDelta;
|
---|
| 335 | }
|
---|
| 336 | indexer += adjust;
|
---|
| 337 | }
|
---|
| 338 | }
|
---|
| 339 |
|
---|
| 340 | /** Length of a square distance intervale in the lookup table */
|
---|
| 341 | private float invSqStepFloat;
|
---|
| 342 |
|
---|
| 343 | /** Used to limit the size of the square root lookup table */
|
---|
| 344 | private int MAX_PRECISION = 256;
|
---|
| 345 |
|
---|
| 346 | /** Square root lookup table */
|
---|
| 347 | private int sqrtLutFixed[] = new int[MAX_PRECISION];
|
---|
| 348 |
|
---|
| 349 | /**
|
---|
| 350 | * Build square root lookup table
|
---|
| 351 | */
|
---|
| 352 | private void calculateFixedPointSqrtLookupTable() {
|
---|
| 353 | float sqStepFloat;
|
---|
| 354 | sqStepFloat = ((fastGradientArraySize * fastGradientArraySize)
|
---|
| 355 | / (MAX_PRECISION - 2));
|
---|
| 356 |
|
---|
| 357 | // The last two values are the same so that linear square root
|
---|
| 358 | // interpolation can happen on the maximum reachable element in the
|
---|
| 359 | // lookup table (precision-2)
|
---|
| 360 | int i;
|
---|
| 361 | for (i = 0; i < MAX_PRECISION - 1; i++) {
|
---|
| 362 | sqrtLutFixed[i] = (int)(Math.sqrt(i*sqStepFloat));
|
---|
| 363 | }
|
---|
| 364 | sqrtLutFixed[i] = sqrtLutFixed[i-1];
|
---|
| 365 | invSqStepFloat = 1/sqStepFloat;
|
---|
| 366 | }
|
---|
| 367 |
|
---|
| 368 | /** Fill the raster, cycling the gradient colors when a point falls outside
|
---|
| 369 | * of the perimeter of the 100% stop circle.
|
---|
| 370 | *
|
---|
| 371 | * This calculation first computes the intersection point of the line
|
---|
| 372 | * from the focus through the current point in the raster, and the
|
---|
| 373 | * perimeter of the gradient circle.
|
---|
| 374 | *
|
---|
| 375 | * Then it determines the percentage distance of the current point along
|
---|
| 376 | * that line (focus is 0%, perimeter is 100%).
|
---|
| 377 | *
|
---|
| 378 | * Equation of a circle centered at (a,b) with radius r:
|
---|
| 379 | * (x-a)^2 + (y-b)^2 = r^2
|
---|
| 380 | * Equation of a line with slope m and y-intercept b
|
---|
| 381 | * y = mx + b
|
---|
| 382 | * replacing y in the cirlce equation and solving using the quadratic
|
---|
| 383 | * formula produces the following set of equations. Constant factors have
|
---|
| 384 | * been extracted out of the inner loop.
|
---|
| 385 | *
|
---|
| 386 | */
|
---|
| 387 | private void cyclicCircularGradientFillRaster(int pixels[], int off,
|
---|
| 388 | int adjust,
|
---|
| 389 | int x, int y,
|
---|
| 390 | int w, int h) {
|
---|
| 391 | // Constant part of the C factor of the quadratic equation
|
---|
| 392 | final double constC =
|
---|
| 393 | -(radiusSq) + (centerX * centerX) + (centerY * centerY);
|
---|
| 394 | double A; //coefficient of the quadratic equation (Ax^2 + Bx + C = 0)
|
---|
| 395 | double B; //coefficient of the quadratic equation
|
---|
| 396 | double C; //coefficient of the quadratic equation
|
---|
| 397 | double slope; //slope of the focus-perimeter line
|
---|
| 398 | double yintcpt; //y-intercept of the focus-perimeter line
|
---|
| 399 | double solutionX;//intersection with circle X coordinate
|
---|
| 400 | double solutionY;//intersection with circle Y coordinate
|
---|
| 401 | final float constX = (a00*x) + (a01*y) + a02;//const part of X coord
|
---|
| 402 | final float constY = (a10*x) + (a11*y) + a12; //const part of Y coord
|
---|
| 403 | final float precalc2 = 2 * centerY;//const in inner loop quad. formula
|
---|
| 404 | final float precalc3 =-2 * centerX;//const in inner loop quad. formula
|
---|
| 405 | float X; // User space point X coordinate
|
---|
| 406 | float Y; // User space point Y coordinate
|
---|
| 407 | float g;//value between 0 and 1 specifying position in the gradient
|
---|
| 408 | float det; //determinant of quadratic formula (should always be >0)
|
---|
| 409 | float currentToFocusSq;//sq distance from the current pt. to focus
|
---|
| 410 | float intersectToFocusSq;//sq distance from the intersect pt. to focus
|
---|
| 411 | float deltaXSq; //temp variable for a change in X squared.
|
---|
| 412 | float deltaYSq; //temp variable for a change in Y squared.
|
---|
| 413 | int indexer = off; //index variable for pixels array
|
---|
| 414 | int i, j; //indexing variables for FOR loops
|
---|
| 415 | int pixInc = w+adjust;//incremental index change for pixels array
|
---|
| 416 |
|
---|
| 417 | for (j = 0; j < h; j++) { //for every row
|
---|
| 418 |
|
---|
| 419 | X = (a01*j) + constX; //constants from column to column
|
---|
| 420 | Y = (a11*j) + constY;
|
---|
| 421 |
|
---|
| 422 | //for every column (inner loop begins here)
|
---|
| 423 | for (i = 0; i < w; i++) {
|
---|
| 424 |
|
---|
| 425 | // special case to avoid divide by zero or very near zero
|
---|
| 426 | if (((X-focusX)>-0.000001) &&
|
---|
| 427 | ((X-focusX)< 0.000001)) {
|
---|
| 428 | solutionX = focusX;
|
---|
| 429 |
|
---|
| 430 | solutionY = centerY;
|
---|
| 431 |
|
---|
| 432 | solutionY += (Y > focusY)?trivial:-trivial;
|
---|
| 433 | }
|
---|
| 434 |
|
---|
| 435 | else {
|
---|
| 436 |
|
---|
| 437 | //slope of the focus-current line
|
---|
| 438 | slope = (Y - focusY) / (X - focusX);
|
---|
| 439 |
|
---|
| 440 | yintcpt = Y - (slope * X); //y-intercept of that same line
|
---|
| 441 |
|
---|
| 442 | //use the quadratic formula to calculate the intersection
|
---|
| 443 | //point
|
---|
| 444 | A = (slope * slope) + 1;
|
---|
| 445 |
|
---|
| 446 | B = precalc3 + (-2 * slope * (centerY - yintcpt));
|
---|
| 447 |
|
---|
| 448 | C = constC + (yintcpt* (yintcpt - precalc2));
|
---|
| 449 |
|
---|
| 450 | det = (float)Math.sqrt((B * B) - ( 4 * A * C));
|
---|
| 451 |
|
---|
| 452 | solutionX = -B;
|
---|
| 453 |
|
---|
| 454 | //choose the positive or negative root depending
|
---|
| 455 | //on where the X coord lies with respect to the focus.
|
---|
| 456 | solutionX += (X < focusX)?-det:det;
|
---|
| 457 |
|
---|
| 458 | solutionX = solutionX / (2 * A);//divisor
|
---|
| 459 |
|
---|
| 460 | solutionY = (slope * solutionX) + yintcpt;
|
---|
| 461 | }
|
---|
| 462 |
|
---|
| 463 | //calculate the square of the distance from the current point
|
---|
| 464 | //to the focus and the square of the distance from the
|
---|
| 465 | //intersection point to the focus. Want the squares so we can
|
---|
| 466 | //do 1 square root after division instead of 2 before.
|
---|
| 467 |
|
---|
| 468 | deltaXSq = (float)solutionX - focusX;
|
---|
| 469 | deltaXSq = deltaXSq * deltaXSq;
|
---|
| 470 |
|
---|
| 471 | deltaYSq = (float)solutionY - focusY;
|
---|
| 472 | deltaYSq = deltaYSq * deltaYSq;
|
---|
| 473 |
|
---|
| 474 | intersectToFocusSq = deltaXSq + deltaYSq;
|
---|
| 475 |
|
---|
| 476 | deltaXSq = X - focusX;
|
---|
| 477 | deltaXSq = deltaXSq * deltaXSq;
|
---|
| 478 |
|
---|
| 479 | deltaYSq = Y - focusY;
|
---|
| 480 | deltaYSq = deltaYSq * deltaYSq;
|
---|
| 481 |
|
---|
| 482 | currentToFocusSq = deltaXSq + deltaYSq;
|
---|
| 483 |
|
---|
| 484 | //want the percentage (0-1) of the current point along the
|
---|
| 485 | //focus-circumference line
|
---|
| 486 | g = (float)Math.sqrt(currentToFocusSq / intersectToFocusSq);
|
---|
| 487 |
|
---|
| 488 | //Get the color at this point
|
---|
| 489 | pixels[indexer + i] = indexIntoGradientsArrays(g);
|
---|
| 490 |
|
---|
| 491 | X += a00; //incremental change in X, Y
|
---|
| 492 | Y += a10;
|
---|
| 493 | } //end inner loop
|
---|
| 494 | indexer += pixInc;
|
---|
| 495 | } //end outer loop
|
---|
| 496 | }
|
---|
| 497 |
|
---|
| 498 |
|
---|
| 499 | /** Fill the raster, cycling the gradient colors when a point
|
---|
| 500 | * falls outside of the perimeter of the 100% stop circle. Use
|
---|
| 501 | * the anti-aliased gradient lookup.
|
---|
| 502 | *
|
---|
| 503 | * This calculation first computes the intersection point of the line
|
---|
| 504 | * from the focus through the current point in the raster, and the
|
---|
| 505 | * perimeter of the gradient circle.
|
---|
| 506 | *
|
---|
| 507 | * Then it determines the percentage distance of the current point along
|
---|
| 508 | * that line (focus is 0%, perimeter is 100%).
|
---|
| 509 | *
|
---|
| 510 | * Equation of a circle centered at (a,b) with radius r:
|
---|
| 511 | * (x-a)^2 + (y-b)^2 = r^2
|
---|
| 512 | * Equation of a line with slope m and y-intercept b
|
---|
| 513 | * y = mx + b
|
---|
| 514 | * replacing y in the cirlce equation and solving using the quadratic
|
---|
| 515 | * formula produces the following set of equations. Constant factors have
|
---|
| 516 | * been extracted out of the inner loop.
|
---|
| 517 | * */
|
---|
| 518 | private void antiAliasFillRaster(int pixels[], int off,
|
---|
| 519 | int adjust,
|
---|
| 520 | int x, int y,
|
---|
| 521 | int w, int h) {
|
---|
| 522 | // Constant part of the C factor of the quadratic equation
|
---|
| 523 | final double constC =
|
---|
| 524 | -(radiusSq) + (centerX * centerX) + (centerY * centerY);
|
---|
| 525 | //coefficients of the quadratic equation (Ax^2 + Bx + C = 0)
|
---|
| 526 | final float precalc2 = 2 * centerY;//const in inner loop quad. formula
|
---|
| 527 | final float precalc3 =-2 * centerX;//const in inner loop quad. formula
|
---|
| 528 |
|
---|
| 529 | //const part of X,Y coord (shifted to bottom left corner of pixel.
|
---|
| 530 | final float constX = (a00*(x-.5f)) + (a01*(y+.5f)) + a02;
|
---|
| 531 | final float constY = (a10*(x-.5f)) + (a11*(y+.5f)) + a12;
|
---|
| 532 | float X; // User space point X coordinate
|
---|
| 533 | float Y; // User space point Y coordinate
|
---|
| 534 | int i, j; //indexing variables for FOR loops
|
---|
| 535 | int indexer = off-1; //index variable for pixels array
|
---|
| 536 |
|
---|
| 537 | // Size of a pixel in user space.
|
---|
| 538 | double pixSzSq = (float)(a00*a00+a01*a01+a10*a10+a11*a11);
|
---|
| 539 | double [] prevGs = new double[w+1];
|
---|
| 540 | double deltaXSq, deltaYSq;
|
---|
| 541 | double solutionX, solutionY;
|
---|
| 542 | double slope, yintcpt, A, B, C, det;
|
---|
| 543 | double intersectToFocusSq, currentToFocusSq;
|
---|
| 544 | double g00, g01, g10, g11;
|
---|
| 545 |
|
---|
| 546 | // Set X,Y to top left corner of first pixel of first row.
|
---|
| 547 | X = constX - a01;
|
---|
| 548 | Y = constY - a11;
|
---|
| 549 |
|
---|
| 550 | // Calc top row of g's.
|
---|
| 551 | for (i=0; i <= w; i++) {
|
---|
| 552 | // special case to avoid divide by zero or very near zero
|
---|
| 553 | if (((X-focusX)>-0.000001) &&
|
---|
| 554 | ((X-focusX)< 0.000001)) {
|
---|
| 555 | solutionX = focusX;
|
---|
| 556 | solutionY = centerY;
|
---|
| 557 | solutionY += (Y > focusY)?trivial:-trivial;
|
---|
| 558 | }
|
---|
| 559 | else {
|
---|
| 560 | // Formula for Circle: (X-Xc)^2 + (Y-Yc)^2 - R^2 = 0
|
---|
| 561 | // Formula line: Y = Slope*x + Y0;
|
---|
| 562 | //
|
---|
| 563 | // So you substitue line into Circle and apply
|
---|
| 564 | // Quadradic formula.
|
---|
| 565 |
|
---|
| 566 |
|
---|
| 567 | //slope of the focus-current line
|
---|
| 568 | slope = (Y - focusY) / (X - focusX);
|
---|
| 569 |
|
---|
| 570 | yintcpt = Y - (slope * X); //y-intercept of that same line
|
---|
| 571 |
|
---|
| 572 | //use the quadratic formula to calculate the intersection
|
---|
| 573 | //point
|
---|
| 574 | A = (slope * slope) + 1;
|
---|
| 575 |
|
---|
| 576 | B = precalc3 + (-2 * slope * (centerY - yintcpt));
|
---|
| 577 |
|
---|
| 578 | C = constC + (yintcpt* (yintcpt - precalc2));
|
---|
| 579 |
|
---|
| 580 | det = Math.sqrt((B * B) - ( 4 * A * C));
|
---|
| 581 |
|
---|
| 582 | solutionX = -B;
|
---|
| 583 |
|
---|
| 584 | //choose the positive or negative root depending
|
---|
| 585 | //on where the X coord lies with respect to the focus.
|
---|
| 586 | solutionX += (X < focusX)?-det:det;
|
---|
| 587 |
|
---|
| 588 | solutionX = solutionX / (2 * A);//divisor
|
---|
| 589 |
|
---|
| 590 | solutionY = (slope * solutionX) + yintcpt;
|
---|
| 591 | }
|
---|
| 592 |
|
---|
| 593 | //calculate the square of the distance from the current point
|
---|
| 594 | //to the focus and the square of the distance from the
|
---|
| 595 | //intersection point to the focus. Want the squares so we can
|
---|
| 596 | //do 1 square root after division instead of 2 before.
|
---|
| 597 | deltaXSq = solutionX - focusX;
|
---|
| 598 | deltaXSq = deltaXSq * deltaXSq;
|
---|
| 599 |
|
---|
| 600 | deltaYSq = solutionY - focusY;
|
---|
| 601 | deltaYSq = deltaYSq * deltaYSq;
|
---|
| 602 |
|
---|
| 603 | intersectToFocusSq = deltaXSq + deltaYSq;
|
---|
| 604 |
|
---|
| 605 | deltaXSq = X - focusX;
|
---|
| 606 | deltaXSq = deltaXSq * deltaXSq;
|
---|
| 607 |
|
---|
| 608 | deltaYSq = Y - focusY;
|
---|
| 609 | deltaYSq = deltaYSq * deltaYSq;
|
---|
| 610 |
|
---|
| 611 | currentToFocusSq = deltaXSq + deltaYSq;
|
---|
| 612 |
|
---|
| 613 | //want the percentage (0-1) of the current point along the
|
---|
| 614 | //focus-circumference line
|
---|
| 615 | prevGs[i] = Math.sqrt(currentToFocusSq / intersectToFocusSq);
|
---|
| 616 |
|
---|
| 617 | X += a00; //incremental change in X, Y
|
---|
| 618 | Y += a10;
|
---|
| 619 | }
|
---|
| 620 |
|
---|
| 621 | for (j = 0; j < h; j++) { //for every row
|
---|
| 622 |
|
---|
| 623 | // Set X,Y to bottom edge of pixel row.
|
---|
| 624 | X = (a01*j) + constX; //constants from row to row
|
---|
| 625 | Y = (a11*j) + constY;
|
---|
| 626 |
|
---|
| 627 | g10 = prevGs[0];
|
---|
| 628 | // special case to avoid divide by zero or very near zero
|
---|
| 629 | if (((X-focusX)>-0.000001) &&
|
---|
| 630 | ((X-focusX)< 0.000001)) {
|
---|
| 631 | solutionX = focusX;
|
---|
| 632 | solutionY = centerY;
|
---|
| 633 | solutionY += (Y > focusY)?trivial:-trivial;
|
---|
| 634 | }
|
---|
| 635 | else {
|
---|
| 636 | // Formula for Circle: (X-Xc)^2 + (Y-Yc)^2 - R^2 = 0
|
---|
| 637 | // Formula line: Y = Slope*x + Y0;
|
---|
| 638 | //
|
---|
| 639 | // So you substitue line into Circle and apply
|
---|
| 640 | // Quadradic formula.
|
---|
| 641 |
|
---|
| 642 |
|
---|
| 643 | //slope of the focus-current line
|
---|
| 644 | slope = (Y - focusY) / (X - focusX);
|
---|
| 645 |
|
---|
| 646 | yintcpt = Y - (slope * X); //y-intercept of that same line
|
---|
| 647 |
|
---|
| 648 | //use the quadratic formula to calculate the intersection
|
---|
| 649 | //point
|
---|
| 650 | A = (slope * slope) + 1;
|
---|
| 651 |
|
---|
| 652 | B = precalc3 + (-2 * slope * (centerY - yintcpt));
|
---|
| 653 |
|
---|
| 654 | C = constC + (yintcpt* (yintcpt - precalc2));
|
---|
| 655 |
|
---|
| 656 | det = Math.sqrt((B * B) - ( 4 * A * C));
|
---|
| 657 |
|
---|
| 658 | solutionX = -B;
|
---|
| 659 |
|
---|
| 660 | //choose the positive or negative root depending
|
---|
| 661 | //on where the X coord lies with respect to the focus.
|
---|
| 662 | solutionX += (X < focusX)?-det:det;
|
---|
| 663 |
|
---|
| 664 | solutionX = solutionX / (2 * A);//divisor
|
---|
| 665 |
|
---|
| 666 | solutionY = (slope * solutionX) + yintcpt;
|
---|
| 667 | }
|
---|
| 668 |
|
---|
| 669 | //calculate the square of the distance from the current point
|
---|
| 670 | //to the focus and the square of the distance from the
|
---|
| 671 | //intersection point to the focus. Want the squares so we can
|
---|
| 672 | //do 1 square root after division instead of 2 before.
|
---|
| 673 | deltaXSq = solutionX - focusX;
|
---|
| 674 | deltaXSq = deltaXSq * deltaXSq;
|
---|
| 675 |
|
---|
| 676 | deltaYSq = solutionY - focusY;
|
---|
| 677 | deltaYSq = deltaYSq * deltaYSq;
|
---|
| 678 |
|
---|
| 679 | intersectToFocusSq = deltaXSq + deltaYSq;
|
---|
| 680 |
|
---|
| 681 | deltaXSq = X - focusX;
|
---|
| 682 | deltaXSq = deltaXSq * deltaXSq;
|
---|
| 683 |
|
---|
| 684 | deltaYSq = Y - focusY;
|
---|
| 685 | deltaYSq = deltaYSq * deltaYSq;
|
---|
| 686 |
|
---|
| 687 | currentToFocusSq = deltaXSq + deltaYSq;
|
---|
| 688 | g11 = Math.sqrt(currentToFocusSq / intersectToFocusSq);
|
---|
| 689 | prevGs[0] = g11;
|
---|
| 690 |
|
---|
| 691 | X += a00; //incremental change in X, Y
|
---|
| 692 | Y += a10;
|
---|
| 693 |
|
---|
| 694 | //for every column (inner loop begins here)
|
---|
| 695 | for (i=1; i <= w; i++) {
|
---|
| 696 | g00 = g10;
|
---|
| 697 | g01 = g11;
|
---|
| 698 | g10 = prevGs[i];
|
---|
| 699 |
|
---|
| 700 | // special case to avoid divide by zero or very near zero
|
---|
| 701 | if (((X-focusX)>-0.000001) &&
|
---|
| 702 | ((X-focusX)< 0.000001)) {
|
---|
| 703 | solutionX = focusX;
|
---|
| 704 | solutionY = centerY;
|
---|
| 705 | solutionY += (Y > focusY)?trivial:-trivial;
|
---|
| 706 | }
|
---|
| 707 | else {
|
---|
| 708 | // Formula for Circle: (X-Xc)^2 + (Y-Yc)^2 - R^2 = 0
|
---|
| 709 | // Formula line: Y = Slope*x + Y0;
|
---|
| 710 | //
|
---|
| 711 | // So you substitue line into Circle and apply
|
---|
| 712 | // Quadradic formula.
|
---|
| 713 |
|
---|
| 714 |
|
---|
| 715 | //slope of the focus-current line
|
---|
| 716 | slope = (Y - focusY) / (X - focusX);
|
---|
| 717 |
|
---|
| 718 | yintcpt = Y - (slope * X); //y-intercept of that same line
|
---|
| 719 |
|
---|
| 720 | //use the quadratic formula to calculate the intersection
|
---|
| 721 | //point
|
---|
| 722 | A = (slope * slope) + 1;
|
---|
| 723 |
|
---|
| 724 | B = precalc3 + (-2 * slope * (centerY - yintcpt));
|
---|
| 725 |
|
---|
| 726 | C = constC + (yintcpt* (yintcpt - precalc2));
|
---|
| 727 |
|
---|
| 728 | det = Math.sqrt((B * B) - ( 4 * A * C));
|
---|
| 729 |
|
---|
| 730 | solutionX = -B;
|
---|
| 731 |
|
---|
| 732 | //choose the positive or negative root depending
|
---|
| 733 | //on where the X coord lies with respect to the focus.
|
---|
| 734 | solutionX += (X < focusX)?-det:det;
|
---|
| 735 |
|
---|
| 736 | solutionX = solutionX / (2 * A);//divisor
|
---|
| 737 |
|
---|
| 738 | solutionY = (slope * solutionX) + yintcpt;
|
---|
| 739 | }
|
---|
| 740 |
|
---|
| 741 | //calculate the square of the distance from the current point
|
---|
| 742 | //to the focus and the square of the distance from the
|
---|
| 743 | //intersection point to the focus. Want the squares so we can
|
---|
| 744 | //do 1 square root after division instead of 2 before.
|
---|
| 745 | deltaXSq = solutionX - focusX;
|
---|
| 746 | deltaXSq = deltaXSq * deltaXSq;
|
---|
| 747 |
|
---|
| 748 | deltaYSq = solutionY - focusY;
|
---|
| 749 | deltaYSq = deltaYSq * deltaYSq;
|
---|
| 750 |
|
---|
| 751 | intersectToFocusSq = deltaXSq + deltaYSq;
|
---|
| 752 |
|
---|
| 753 | deltaXSq = X - focusX;
|
---|
| 754 | deltaXSq = deltaXSq * deltaXSq;
|
---|
| 755 |
|
---|
| 756 | deltaYSq = Y - focusY;
|
---|
| 757 | deltaYSq = deltaYSq * deltaYSq;
|
---|
| 758 |
|
---|
| 759 | currentToFocusSq = deltaXSq + deltaYSq;
|
---|
| 760 | g11 = Math.sqrt(currentToFocusSq / intersectToFocusSq);
|
---|
| 761 | prevGs[i] = g11;
|
---|
| 762 |
|
---|
| 763 | //Get the color at this point
|
---|
| 764 | pixels[indexer+i] = indexGradientAntiAlias
|
---|
| 765 | ((float)((g00+g01+g10+g11)/4),
|
---|
| 766 | (float)Math.max(Math.abs(g11-g00),
|
---|
| 767 | Math.abs(g10-g01)));
|
---|
| 768 |
|
---|
| 769 | X += a00; //incremental change in X, Y
|
---|
| 770 | Y += a10;
|
---|
| 771 | } //end inner loop
|
---|
| 772 | indexer += (w+adjust);
|
---|
| 773 | } //end outer loop
|
---|
| 774 | }
|
---|
| 775 | }
|
---|